96 research outputs found

    A Petrov-Galerkin Finite Element Method for Fractional Convection-Diffusion Equations

    Get PDF
    In this work, we develop variational formulations of Petrov-Galerkin type for one-dimensional fractional boundary value problems involving either a Riemann-Liouville or Caputo derivative of order α(3/2,2)\alpha\in(3/2, 2) in the leading term and both convection and potential terms. They arise in the mathematical modeling of asymmetric super-diffusion processes in heterogeneous media. The well-posedness of the formulations and sharp regularity pickup of the variational solutions are established. A novel finite element method is developed, which employs continuous piecewise linear finite elements and "shifted" fractional powers for the trial and test space, respectively. The new approach has a number of distinct features: It allows deriving optimal error estimates in both L2(D)L^2(D) and H1(D)H^1(D) norms; and on a uniform mesh, the stiffness matrix of the leading term is diagonal and the resulting linear system is well conditioned. Further, in the Riemann-Liouville case, an enriched FEM is proposed to improve the convergence. Extensive numerical results are presented to verify the theoretical analysis and robustness of the numerical scheme.Comment: 23 p

    Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview

    Get PDF
    Over the past few decades, there has been substantial interest in evolution equations that involving a fractional-order derivative of order α(0,1)\alpha\in(0,1) in time, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following aspects of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space-time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.Comment: 24 pages, 3 figure

    Some error estimates for the lumped mass finite element method for a parabolic problem

    Get PDF
    We study the spatially semidiscrete lumped mass method for the model homogeneous heat equation with homogeneous Dirichlet boundary conditions. Improving earlier results we show that known optimal order smooth initial data error estimates for the standard Galerkin method carry over to the lumped mass method whereas nonsmooth initial data estimates require special assumptions on the triangulation. We also discuss the application to time discretization by the backward Euler and Crank-Nicolson methods

    An Analysis of the Rayleigh-Stokes problem for a Generalized Second-Grade Fluid

    Get PDF
    We study the Rayleigh-Stokes problem for a generalized second-grade fluid which involves a Riemann-Liouville fractional derivative in time, and present an analysis of the problem in the continuous, space semidiscrete and fully discrete formulations. We establish the Sobolev regularity of the homogeneous problem for both smooth and nonsmooth initial data vv, including vL2(Ω)v\in L^2(\Omega). A space semidiscrete Galerkin scheme using continuous piecewise linear finite elements is developed, and optimal with respect to initial data regularity error estimates for the finite element approximations are derived. Further, two fully discrete schemes based on the backward Euler method and second-order backward difference method and the related convolution quadrature are developed, and optimal error estimates are derived for the fully discrete approximations for both smooth and nonsmooth initial data. Numerical results for one- and two-dimensional examples with smooth and nonsmooth initial data are presented to illustrate the efficiency of the method, and to verify the convergence theory.Comment: 23 pp, 4 figures. The error analysis of the fully discrete scheme is shortene
    corecore